organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Methylquinolin-8-yl 2-nitrobenzoate

Gang Lei

Department of Chemistry, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: leigang307@yahoo.com.cn

Received 4 October 2007; accepted 6 October 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.103; data-to-parameter ratio = 15.6.

In the title compound, $C_{17}H_{12}N_2O_4$, the quinoline ring system is essentially planar. The ester group is twisted away from the quinoline ring system and nitrobenzene ring by 84.83 (3) and 80.56 (4)°, respectively. The crystal packing is stabilized by $C-H\cdots O$ intermolecular hydrogen bonds, and $\pi-\pi$ interactions between the quinoline ring systems of inversionrelated molecules, with a centroid–centroid distance of 3.6346 (6) Å.

Related literature

For applications of quinoline benzoate derivatives, see: Zhang et al. (2005); Cheng et al. (2006).

Experimental

Crystal data

$C_{17}H_{12}N_2O_4$	
$M_r = 308.29$	
Triclinic, P1	
a = 7.6661 (4) Å	
<i>b</i> = 8.1331 (3) Å	
c = 12.3871 (5) Å	

 $\alpha = 95.979 (1)^{\circ}$ $\beta = 105.389 (2)^{\circ}$ $\gamma = 100.749 (1)^{\circ}$ $V = 721.88 (6) \text{ Å}^{3}$ Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 153 (2) K

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: none 7096 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 210 parameters $wR(F^2) = 0.103$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ 3266 reflections $\Delta \rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$

 $0.58 \times 0.54 \times 0.35 \text{ mm}$

 $R_{\rm int} = 0.019$

3266 independent reflections 2892 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O2^{i}$ $C4-H4\cdots O4^{ii}$ $C6-H6\cdots O4^{iii}$ $C15-H15\cdots O2^{iv}$	0.95 0.95 0.95 0.95	2.53 2.49 2.58 2.49	3.3790 (13) 3.4277 (13) 3.4965 (14) 3.2698 (12)	148 168 163 140

Symmetry codes: (i) -x + 1, -y, -z; (ii) x - 1, y, z - 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

The author thanks the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2478).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, Y. F., Zhao, D. T., Zhang, M., Liu, Z. Q., Zhou, Y. F., Shu, T. M., Li, F. Y., Yi, T. & Huang, C. H. (2006). *Tetrahedron Lett.* **47**, 6413–6416.

Rigaku (2004). *RAPID-AUTO* and *CrystalStructure*. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zhang, H., Han, L. F., Zachariasse, K. A. & Jiang, Y. B. (2005). Org. Lett. 7, 4217–4220.

Acta Cryst. (2007). E63, o4304 [doi:10.1107/S1600536807049069]

2-Methylquinolin-8-yl 2-nitrobenzoate

G. Lei

Comment

8-Hydroxyquinoline benzoate derivatives are a class of chemosensors for metal ions (Zhang *et al.*, 2005; Cheng *et al.*, 2006). We report here the crystal structure of the title compound, (I).

Bond lengths and angles in (I) are normal. The quinoline ring system is planar, with a maximum deviation of 0.019 (4)Å for atom C3. The ester group is twisted away from the planes of the attached rings (Fig. 1). The dihedral angle between the N1/C2—C10 and O1/O2/C12/C13 planes is 84.83 (3)°, and that between O1/O2/C12/C13 and C13—C18 planes is 80.56 (4)°. The C13—C18 and N2/O3/O4/C18 planes form a dihedral angle of 13.18 (4)°. The crystal packing is stabilized by C—H…O hydrogen bonds (Table 1), and π - π interactions between the quinoline ring systems of the inversion-related molecules at (*x*, *y*, *z*) and (1 – *x*, 1 – *y*, –*z*), with a centroid–centroid distance of 3.6346 (6) Å.

Experimental

Compound (I) was prepared according to the procedure of Zhang *et al.* (2005). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from ethyl acetate.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.95 or 0.98 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.

2-Methylquinolin-8-yl 2-nitrobenzoate

Crystal data	
$C_{17}H_{12}N_2O_4$	Z = 2
$M_r = 308.29$	$F_{000} = 320$
Triclinic, P1	$D_{\rm x} = 1.418 { m Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å

a = 7.6661 (4) Å
b = 8.1331 (3) Å
c = 12.3871 (5) Å
$\alpha = 95.979 (1)^{\circ}$
$\beta = 105.389 \ (2)^{\circ}$
γ = 100.749 (1)°
V = 721.88 (6) Å ³

Data collection

Duiu concenton	
Rigaku R-AXIS RAPID diffractometer	2892 reflections with $I > 2\sigma(I)$
Radiation source: Rotating Anode	$R_{\rm int} = 0.019$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 153(2) K	$\theta_{\min} = 3.3^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -9 \rightarrow 10$
7096 measured reflections	$l = -16 \rightarrow 13$
3266 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.0656P)^2 + 0.1316P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.103$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
3266 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
210 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.081 (8)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 6275 reflections

 $\theta = 3.3 - 27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 153 (2) KBlock, colourless $0.58 \times 0.54 \times 0.35 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у		z	$U_{\rm iso}^{*}/U_{\rm eq}$
01	0.73507 (9)	0.38524 (8)		0.30774 (6)	0.02379 (18)
02	0.60868 (9)	0.12003 (9)		0.32654 (6)	0.02626 (18)
03	0.77544 (12)	0.34184 (12	.)	0.55498 (7)	0.0408 (2)
04	0.96676 (13)	0.26474 (12	.)	0.69219 (6)	0.0402 (2)
N1	0.66377 (12)	0.25217 (10)	0.08459 (7)	0.0239 (2)
N2	0.91199 (12)	0.28391 (11)	0.59306 (7)	0.0267 (2)
C2	0.62798 (15)	0.18862 (12	.)	-0.02351 (9)	0.0274 (2)
C3	0.46019 (17)	0.19190 (14	.)	-0.10690 (9)	0.0332 (3)
Н3	0.4387	0.1427		-0.1836	0.040*
C4	0.33156 (16)	0.26503 (14	·)	-0.07696 (9)	0.0321 (3)
H4	0.2204	0.2687		-0.1325	0.038*
C5	0.23707 (15)	0.41284 (14	·)	0.07774 (10)	0.0313 (2)
Н5	0.1245	0.4210		0.0255	0.038*
C6	0.27352 (15)	0.47534 (14	·)	0.19005 (10)	0.0319 (2)
H6	0.1864	0.5261		0.2154	0.038*
C7	0.44085 (15)	0.46453 (13)	0.26868 (9)	0.0273 (2)
H7	0.4665	0.5073		0.3469	0.033*
C8	0.56502 (13)	0.39205 (12	.)	0.23104 (8)	0.0226 (2)
С9	0.53342 (13)	0.32493 (11)	0.11554 (8)	0.0221 (2)
C10	0.36400 (14)	0.33626 (12	.)	0.03803 (9)	0.0261 (2)
C11	0.77083 (18)	0.11101 (14)	-0.05889 (10)	0.0357 (3)
H11A	0.8732	0.1112		0.0083	0.043*
H11B	0.8185	0.1769		-0.1109	0.043*
H11C	0.7143	-0.0059		-0.0972	0.043*
C12	0.74052 (13)	0.23497 (12	.)	0.34368 (7)	0.0198 (2)
C13	0.93617 (13)	0.22311 (12)	0.39880 (8)	0.0209 (2)
C14	1.03825 (14)	0.18029 (14	.)	0.32710 (9)	0.0286 (2)
H14	0.9882	0.1720		0.2474	0.034*
C15	1.21351 (15)	0.14958 (15)	0.37172 (11)	0.0338 (3)
H15	1.2825	0.1204		0.3222	0.041*
C16	1.28816 (14)	0.16115 (14)	0.48743 (11)	0.0340 (3)
H16	1.4079	0.1396		0.5170	0.041*
C17	1.18880 (14)	0.20419 (13)	0.56056 (9)	0.0290 (2)
H17	1.2391	0.2122		0.6403	0.035*
C18	1.01464 (13)	0.23525 (12)	0.51498 (8)	0.0224 (2)
Atomic displaceme	ent parameters (A	$Å^2)$			
l	-J ¹¹	U^{22}	U^{33}	U^{12}	U^{13}
O1 (0.0232 (4)	0.0227 (4)	0.0204 (3	b) 0.0044 ((3) -0.0019 (3)
O2 (0.0197 (3)	0.0278 (4)	0.0308 (4	0.0054	(3) 0.0051 (3)
03 (0.0394 (5)	0.0640 (6)	0.0249 (4	0.0296	(4) 0.0077(3)

04

N1

0.0487 (5)

0.0266 (4)

0.0538 (5)

0.0210 (4)

0.0171 (4)

0.0224 (4)

0.0174 (4)

0.0047 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

U²³ 0.0041 (2) 0.0086 (3) 0.0043 (4)

0.0056 (3)

0.0048 (3)

0.0036 (3)

0.0040 (3)

N2	0.0285 (4)	0.0304 (5)	0.0180 (4)	0.0073 (3)	0.0019 (3)	0.0014 (3)
C2	0.0351 (6)	0.0203 (5)	0.0246 (5)	0.0027 (4)	0.0068 (4)	0.0044 (4)
C3	0.0446 (6)	0.0275 (5)	0.0196 (5)	0.0020 (4)	0.0007 (4)	0.0022 (4)
C4	0.0330 (6)	0.0306 (5)	0.0228 (5)	0.0026 (4)	-0.0061 (4)	0.0067 (4)
C5	0.0231 (5)	0.0299 (5)	0.0377 (6)	0.0082 (4)	-0.0005 (4)	0.0115 (4)
C6	0.0282 (5)	0.0299 (5)	0.0410 (6)	0.0122 (4)	0.0099 (5)	0.0108 (4)
C7	0.0308 (5)	0.0247 (5)	0.0266 (5)	0.0074 (4)	0.0070 (4)	0.0056 (4)
C8	0.0220 (5)	0.0202 (4)	0.0219 (5)	0.0041 (3)	-0.0001 (4)	0.0059 (3)
C9	0.0228 (5)	0.0188 (4)	0.0218 (5)	0.0035 (3)	0.0012 (4)	0.0057 (3)
C10	0.0257 (5)	0.0223 (5)	0.0249 (5)	0.0033 (4)	-0.0016 (4)	0.0076 (4)
C11	0.0462 (7)	0.0295 (6)	0.0336 (6)	0.0074 (5)	0.0171 (5)	0.0029 (4)
C12	0.0217 (4)	0.0241 (5)	0.0143 (4)	0.0074 (3)	0.0050 (3)	0.0025 (3)
C13	0.0188 (4)	0.0215 (4)	0.0215 (5)	0.0040 (3)	0.0040 (3)	0.0049 (3)
C14	0.0258 (5)	0.0352 (6)	0.0278 (5)	0.0077 (4)	0.0111 (4)	0.0079 (4)
C15	0.0251 (5)	0.0378 (6)	0.0451 (7)	0.0098 (4)	0.0179 (5)	0.0104 (5)
C16	0.0174 (5)	0.0335 (6)	0.0502 (7)	0.0077 (4)	0.0051 (4)	0.0110 (5)
C17	0.0225 (5)	0.0284 (5)	0.0299 (5)	0.0040 (4)	-0.0021 (4)	0.0061 (4)
C18	0.0208 (5)	0.0218 (5)	0.0212 (5)	0.0033 (3)	0.0020 (4)	0.0026 (3)

Geometric parameters (Å, °)

O1-C12	1.3476 (11)	C7—C8	1.3633 (14)
O1—C8	1.4091 (11)	С7—Н7	0.95
O2—C12	1.1970 (12)	C8—C9	1.4169 (13)
O3—N2	1.2282 (11)	C9—C10	1.4208 (13)
O4—N2	1.2244 (11)	C11—H11A	0.98
N1—C2	1.3203 (13)	C11—H11B	0.98
N1—C9	1.3683 (13)	C11—H11C	0.98
N2-C18	1.4669 (13)	C12—C13	1.4998 (12)
C2—C3	1.4268 (15)	C13—C14	1.3887 (14)
C2—C11	1.4982 (16)	C13—C18	1.3898 (13)
C3—C4	1.3530 (17)	C14—C15	1.3903 (15)
С3—Н3	0.95	C14—H14	0.95
C4—C10	1.4187 (15)	C15—C16	1.3811 (17)
C4—H4	0.95	C15—H15	0.95
C5—C6	1.3658 (17)	C16—C17	1.3868 (16)
C5-C10	1.4117 (16)	C16—H16	0.95
С5—Н5	0.95	C17—C18	1.3859 (13)
C6—C7	1.4138 (14)	С17—Н17	0.95
С6—Н6	0.95		
C12—O1—C8	114.97 (7)	C5—C10—C9	119.76 (9)
C2—N1—C9	117.53 (9)	C4—C10—C9	116.60 (10)
O4—N2—O3	123.68 (9)	C2-C11-H11A	109.5
O4—N2—C18	118.44 (8)	C2-C11-H11B	109.5
O3—N2—C18	117.88 (8)	H11A—C11—H11B	109.5
N1-C2-C3	122.62 (10)	C2-C11-H11C	109.5
N1-C2-C11	118.09 (10)	H11A—C11—H11C	109.5
C3—C2—C11	119.29 (10)	H11B—C11—H11C	109.5
C4—C3—C2	120.10 (10)	O2—C12—O1	124.81 (8)

С4—С3—Н3	120.0	O2—C12—C13		123.67 (8)
С2—С3—Н3	120.0	O1—C12—C13		111.29 (8)
C3—C4—C10	119.46 (10)	C14—C13—C18		118.23 (9)
C3—C4—H4	120.3	C14—C13—C12		116.83 (8)
C10—C4—H4	120.3	C18—C13—C12		124.62 (8)
C6—C5—C10	121.08 (9)	C13—C14—C15		120.16 (10)
С6—С5—Н5	119.5	C13—C14—H14		119.9
С10—С5—Н5	119.5	C15—C14—H14		119.9
C5—C6—C7	120.06 (10)	C16—C15—C14		120.61 (10)
С5—С6—Н6	120.0	С16—С15—Н15		119.7
С7—С6—Н6	120.0	C14—C15—H15		119.7
C8—C7—C6	119.32 (10)	C15—C16—C17		120.17 (9)
С8—С7—Н7	120.3	C15—C16—H16		119.9
С6—С7—Н7	120.3	C17—C16—H16		119.9
C7—C8—O1	120.01 (9)	C18—C17—C16		118.62 (10)
C7—C8—C9	122.77 (9)	C18—C17—H17		120.7
01—C8—C9	117.21 (8)	С16—С17—Н17		120.7
N1—C9—C8	119.31 (8)	C17—C18—C13		122.21 (9)
N1—C9—C10	123.67 (9)	C17—C18—N2		118.26 (9)
C8—C9—C10	117.01 (9)	C13—C18—N2		119.52 (8)
C5-C10-C4	123.62 (10)			
C9—N1—C2—C3	-0.68 (15)	N1—C9—C10—C4		0.80 (14)
C9—N1—C2—C11	179.05 (9)	C8—C9—C10—C4		-178.51 (9)
N1—C2—C3—C4	1.30 (16)	C8—O1—C12—O2		-9.72 (13)
C11—C2—C3—C4	-178.44 (10)	C8—O1—C12—C13		164.90 (8)
C2—C3—C4—C10	-0.80 (16)	O2-C12-C13-C14		93.64 (11)
C10—C5—C6—C7	0.22 (16)	O1-C12-C13-C14		-81.05 (10)
C5—C6—C7—C8	0.32 (15)	O2-C12-C13-C18		-79.68 (13)
C6—C7—C8—O1	177.95 (8)	O1-C12-C13-C18		105.63 (10)
C6—C7—C8—C9	-0.53 (15)	C18—C13—C14—C15		0.46 (15)
C12—O1—C8—C7	99.86 (10)	C12—C13—C14—C15		-173.31 (9)
C12—O1—C8—C9	-81.58 (10)	C13—C14—C15—C16		0.01 (16)
C2—N1—C9—C8	178.93 (8)	C14—C15—C16—C17		-0.19 (17)
C2-N1-C9-C10	-0.37 (14)	C15—C16—C17—C18		-0.11 (16)
C7—C8—C9—N1	-179.16 (9)	C16—C17—C18—C13		0.61 (15)
O1-C8-C9-N1	2.33 (13)	C16—C17—C18—N2		-178.83 (9)
C7—C8—C9—C10	0.19 (14)	C14—C13—C18—C17		-0.78 (14)
O1—C8—C9—C10	-178.32 (8)	C12—C13—C18—C17		172.46 (9)
C6—C5—C10—C4	178.22 (10)	C14—C13—C18—N2		178.66 (9)
C6—C5—C10—C9	-0.55 (16)	C12-C13-C18-N2		-8.10 (14)
C3—C4—C10—C5	-178.99 (10)	O4-N2-C18-C17		-13.43 (14)
C3—C4—C10—C9	-0.18 (15)	O3—N2—C18—C17		166.56 (9)
N1—C9—C10—C5	179.66 (9)	O4-N2-C18-C13		167.11 (9)
C8—C9—C10—C5	0.35 (14)	O3—N2—C18—C13		-12.90 (14)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
C3—H3···O2 ⁱ	0.95	2.53	3.3790 (13)	148

C4—H4···O4 ⁱⁱ	0.95	2.49	3.4277 (13)	168	
C6—H6···O4 ⁱⁱⁱ	0.95	2.58	3.4965 (14)	163	
C15—H15…O2 ^{iv}	0.95	2.49	3.2698 (12)	140	
Symmetry codes: (i) $-x+1$, $-y$, $-z$; (ii) $x-1$, y , $z-1$; (iii) $-x+1$, $-y+1$, $-z+1$; (iv) $x+1$, y , z .					

Fig. 1